Primer Design

- 1. Go to NCBI (National Center for Biotechnology Information) website (<u>National Center for</u> <u>Biotechnology Information (nih.gov)</u>
- 2. On the upper part of the page you will find:

3. Click on All Databases

4. Select 'Gene'

5. Type the name of your gene of interest in the query box (GFAP for example)

6. Find your species of interest. Click ctrl+F and type in the name of the species (in our case this is *Macaca mulatta (Rhesus monkey)*

GFAP ID: 419969	glial fibrillary acidic protein [<i>Gallus gallus</i> (chicken)]	Chromosome 27, NC_006114.5 (36976283702163, complement)	
GFAP ID: 396562	glial fibrillary acidic protein [<i>Sus scrofa</i> (pig)]	Chromosome 12, NC_010454.4 (1845626818466594)	
GFAP ID: 712941	glial fibrillary acidic protein [Macaca mulatta (Rhesus monkey)]	Chromosome 16, NC_041769.1 (5616938956180984, complement)	
GFAP ID: 454741	glial fibrillary acidic protein [<i>Pan troglodytes</i> (chimpanzee)]	Chromosome 17, NC_036896.1 (1032305710333051)	CK820_G0052909
GFAP ID: 100033970	glial fibrillary acidic protein [<i>Equus caballus</i> (horse)]	Chromosome 11, NC_009154.3 (1881510118824260)	
GFAP ID: 101081938	glial fibrillary acidic protein [<i>Felis catus</i> (domestic cat)]	Chromosome E1, NC_018736.3 (4486846844877976, complement)	
GFAP ID: 101017460	glial fibrillary acidic protein [<i>Papio anubis</i> (olive baboon)]	Chromosome 17, NC_044992.1 (5172307951734689, complement)	
GFAP ID: 101339778	glial fibrillary acidic protein [<i>Tursiops</i> <i>truncatus</i> (common bottlenose dolphin)]	Chromosome 20, NC_047053.1 (4100782441018040, complement)	
Gfap ID: 100758767	glial fibrillary acidic protein [Cricetulus		179_011607

7. Click on the gene name. In the following page you should find *mRNA and Protein(s)* section

enomic				
1. NC_041769.1 Reference	e Mmul_10 Primary Asse	nbly		
Range	5616938956180984 compl	ement		
Download	GenBank, FASTA, Sequence	Viewer (Graphics)		
RNA and Protein(s)				
1. XM_015119892.2 → XF	014975378.1 glial fibrilla	ry acidic protein isoform X2		
Related	ENSMMUP00000049963.2,	ENSMMUT00000076046.2		
Conserved Domains (2) st	mmary			
	pfam00038 Location:138 → 446	Filament; Intermediate filament protein		
	$\frac{pfam04732}{Location:73 \rightarrow 136}$	Filament_head; Intermediate filament head (DNA binding) region		
2. XM_028836604.1 → XF	028692437.1 glial fibrill	rry acidic protein isoform X1		
Related	ENSMMUP00000046183.2,	ENSMMUT00000077212.2		
Conserved Domains (2) st	mmary			
	<u>pfam04732</u> Location:71 → 136	Filament_head; Intermediate filament head (DNA binding) region		
	pfam00038 Location:138 → 446	Filament; Intermediate filament protein		
ted sequences			≈ ?	

- Click <u>XM_015119892.2</u> which is accession number of the mRNA sequence N.B. <u>XP_014975378.1</u> is the protein sequence ; prefix XM_ (mRNA), XR_ (non-coding RNA), and XP_ (protein)
- 9. The following page will show you the all the information about the mRNA of the gene that you are searching.
- 10. Next click FASTA to obtain the full sequence of the mRNA of your gene of interest.

S NCBI F	Resources 🗹 How To 🕑		Sign in to NCE
Nucleotide	e Nucleotide Advanced		Search
GenBank -		Send to: -	Change region shown
PREDIC variant	CTED: Macaca mulatta glial fibrillary acidic protein (GFAP), transcript X2, mRNA		Customize view
NCBI Refere	ance Sequence: XM_015119892.2		Analyze this sequence Run BLAST
<u>🕫 ta</u> 🖂			Pick Primers
LOCUS	XM_015119892 4016 bp mRNA linear PRI 26-APR-2019		Highlight Sequence Features
DEFINITION	transcript variant X2, mRNA.		Find in this Sequence
ACCESSION VERSION DBLINK	XM_015119892 XM_015119892.2 BioProject: PRJNA528504 Padera		Show in Genome Data Viewer
SOURCE	Narosay Macaca mulatta (Rhesus monkey) <u>Macaca mulatta</u> Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglira; Perimates; Haplorrhini; Granchini; Garconitheridae; Garconitherinae; Macaca		Articles about the GFAP gene A new rhesus macaque assembly and annotati for next-generation sequencing [Biol Direct. 201
COMMENT	Calain many, demonstrates, cercoprinting ratata: MODEL REFSEQ: This record is perioticed by automated computational analysis. This record is derived from a genomic sequence (KC_041750, 1) annotated using gene prediction method: Gnomon, supported by mRNA and EST evidence.		Age-related decreases in SYN levels associate with increases in MAP-2, apo [Age (Dordr). 20' See a
https://www.pcbi	Also See: Documentation of NCBI's Annotation Process		Pathways for the GFAP gene

- 11. Copy the sequence and transfer it into a word file
- 12. Go to Primer3 Input website
- **13.** Paste the sequence in the box

Primer3web version 4.1.0 -	disclaimer cautions	<u>code</u>						
Select the <u>Task</u> for primer selection generic	v							
Template masking before primer design (ava	ilable species)							
Select species Example: Mus musculus	Nucleotides to mask in 5' direction 1							
Primer failure rate cutoff < 0.1	Nucleotides to mask in 3' direction 0							
Paste source sequence below (5'->3', string o ALUs, LINEs, etc.) or use a <u>Mispriming Libr</u>	f ACGTNacgtn other letters treated as N - rary (repeat library) NONE	- numbers and blank	s ignored). FASTA format ok. Please N-ou	t undesirable sequence	e (vector,			
GGTAGTGCCATATTTTACAATTTGTAAAACAAGCACGAG GCCTGGAGGCCGGGTGCTCAGGGCTGACATGTCCACCCC	CAAAATGAAGACACTGGCTCATATTCCTGCA AGTGCACCCACTCTGCTTTTTAACTGGGCAG		•					
ACTOGTAAGCAGACTGGTGGGATCTGTGCCCAGAAATGG TCCCCTCTAAGGCTGAAGAAGGGTCCTTCCCCCTCCCCA	AGACTGGGAGGGCCCACTTCAGGGTTCTCCTC							
TGCCACCTGCTGCTGCTGCTGCTGCTGCTATCTTCAGGGCA AAAGACACATGCTGCGCCCTTCCCCA	CTGCTGCTGCCTTTAGTCGCTGAGGAAAAAT							
Pick left primer.	Pick hybridization probe (internal		Pick right primer, or use right primer h	elow]			
or use left primer below	oligo), or use oligo below		(5' to 3' on opposite strand)					

14. Next go down and find General Primer Picking Conditions. Using the information that we have provided in Primer Design Rules file, fill the spaces as indicated.

Upload the settings from a	file	Choose File	No fi	ile chosen					
Primer Size Min 19	Opt	20	Max	21]				
Primer Tm Min 58.0	Opt	59.0	Max	61	Max Tm Difference 5.0	Table of thermodyn	amic parameters	SantaLucia 1998	v
Product Tm Min -10000	0 Opt	0.0	Max	1000000.					
Primer GC% Min 45	Opt	50.0	Max	55]				
			-						
Product Size Ranges 700	300								
Number To Return	5			<u>Max 3' S</u>	tability 9.0				
Max Library Mispriming	12.00	Pair M	ax Lił	orary Mis	priming 20.00				

N.B. Choose your product size range accordingly to the length of your mRNA sequence. Optimal range amplicon length product is between 600-1000bp. For genes with shorter than 600bp of length we usually design amplicon which ranges between 60-70% of the total length. Note that for those smaller gene there is no strict rule about the length of the amplicon.

15. Scroll down in the page, find, and click the button PICK PRIMERS.

General Primer Picking Conditions

11.12.2020

\leftarrow \rightarrow \circlearrowright \textcircled{a} \textcircled{b} https:	://prime	er3.ut.ee			-5	杀	5∕≡	回	6	
M Gmail 🔹 YouTube 😝 Facebook 🔢	•1 PDB-10	D1								
Max GC in primer 3' end 5	5		·							
3' End Distance Between Left Primers 3	3	3' End Distance Between Right Primers	3]						
5 Prime Junction Overlap 7	7	3 Prime Junction Overlap	4	(Distance of the primer ends to one overlap pos	ition	.)				
Concentration of Monovalent Cations 5	50.0	Salt Correction Formula	SantaLuc	ia 1998 🗸 🗸						
Concentration of Divalent Cations	1.5	Concentration of dNTPs	0.6]						
Annealing Oligo Concentration 5	50.0	(Not the concentration of oligos in the r	eaction mi	x but of those annealing to template.)						
Sequencing Spacing 5	500	Sequencing Interval	250]						
Sequencing Lead 5	50	Sequencing Accuracy	20]						
Liberal Base Show Debug	ging Info	Treat ambiguity codes in libraries as	consensu	<u>s</u>						
Lowercase masking Dick anyway	x	Print Statistics								
Pick Primers Download Settings Rese Operative Function Penalty Weig	et Form ghts for	Primers								
Size 1.0 Gt 1.0 Im Lt 1.0 Gt 1.0 GC% Lt 0.0 Gt 0.0										
TH: Self Complementarity 0.0 TH: 3' End Self Complementarity 0.0 TH: Hairpin 0.0 TH: Template Mispriming 0.0										
Self Complementarity 0.0 3' End Self Complementarity 0.0										

16. The page that will open will show you the primes that the program picked

Primer3 Output
PRIMER PICKING RESULTS FOR
Template masking not selected No mispriming library specified Using 1-based sequence positions
OLIGO start len tm gc% any_th 3'_th hairpin seq LEFT PRIMER 1775 20 59.14 55.00 3.32 0.00 0.00 GTTGGAGCTGACAGACG RIGHT PRIMER 2512 20 59.05 55.00 0.00 0.00 GTTGGAGTTTCTGGGTGGCTG SEQUENCE SIZE: 4016 INCLUDED REGION SIZE: 4016
PRODUCT SIZE: 738, PAIR ANY_TH COMPL: 0.30, PAIR 3'_TH COMPL: 0.00
1 TGCTTTGTGGAGCTGTCAAGGCCTGGGCTCTGGGAAAGAGGCACAGGGAGGCCAGGCAAG
61 GAAGGAGTGACCCGGAGGGACAGACCCAGGGGCTAAAGTCCTGATAGGGCAAGAGAGTGC
121 CAGCCCCCTCTTGCTCTATAAGGACCTCCACTGCCACATACAGGCCATGATTGAT
181 GACAAAGGGCTGGTGTCCAATCCCAGCCCCCAGAACTCCAGGGAATGAAT
241 AGAGAGCAGGAATATGGGACATCTGTGTTCGAGGGGGGGG
301 GGGCCTAGTAGGAAATGATGATATAGGCACCCCTTGAGGGTACTGAACAGGTTTGTTCTT
361 CGCCAAATTCCCAGCACCTTGCAGGTACTTACAGCTGAGTGAAAGAAGGCCTGGGTTATG
421 AAATCAAAAAGTTGGAAAGCAGGTCAGAGGTCATCTGGTACAGCCCTTCCTT

You can see some information about the primers that the program picked.

- 1. In the red box (start) is the information about the position of the 5' base of the primer.
- 2. In the green box (len) is the information regarding the length of the primer.
- 3. In the yellow box (Tm) is the information regarding the melting temperature of the primer.
- 4. In the violet box (gc%) is the information about the GC% content of the primers or the percent of G or C bases in the primer.
- 5. In the orange box -any th (Self-Complementarity) and brown box -(hairpin) in the information about the tendency to primers to anneal to itself or to form secondary structure (hairpins). The lower the value the better.

Self-Complementarity 5' ACGTGCGTGAATACGT 3`

In the violet box (3`th)
 The self-complementarity of the primer at the 3` ends (primer dimers formation with itself). The lower the value the better.

- 7. The final Gray box (seq) represent the primers sequence.
- 8. Copy and paste all the information from the BLACK BOX into your word file.
- 9. Add T7 promotor sequence to the forward primer-

T7 GCGTAATACGACTCACTATAGGG + Forward PRIMER

10. Add Sp6 promotor sequence to the reverse primer-

Sp6 GCGATTTAGGTGACACTATAG + Reverse PRIMER