1st PCR (Gradient PCR)

Materials:

- 1. RNase-free tubes and filter tips
- 2. QIAGEN® PCR 10x Buffer
- 3. QIAGEN® Q-Solution 5x
- 4. dNTP Mix (Invitrogen 10 mM; 18427-013) diluted to 2mM
- 5. QIAGEN® Tag DNA Polymerase (5 units/μl)
- 6. Gene specific Forward Primer T7 flanked (5 pmol)¹
- 7. Gene specific Reverse Primer Sp6 flanked (5 pmol)¹
- 8. cDNA with concentration of at least $10 \text{ng}/\mu\text{L}$ for high expressed genes and more for low expressed genes
- 9. Ice²
- 10. PCR machine with option for temperature gradient

Method:

Temperature gradient PCR with three temperatures 53°C, 57°C and 61°C should be tested.

- 1. Prepare the master mix for two genes (we will prepare master mix for three because of pipetting mistakes).
 - 1. H₂0: 20.52 μL
 - 2. 10x buffer: 6 μL
 - 3. Q solution: 12 μL
 - 4. 2mM dNTPs: 6 μL
 - 5. Taq Polymerase: 0.16 μL
- 2. Mix it well by pipetting up and down and place 14 μ L of the mix into a PCR strip. Add 5 μ L of primer mix and 1 μ L of cDNA³. Mix well again by pipetting up and down. Centrifuge the PCR strip briefly and put it into the PCR machine. The final reaction volume is 20 μ L.
- 3. The PCR machine should be adjusted to the following guidelines for designing your program.

Temperature (°C)	Time	Cycles	Notes
94°C	3 min	1	Initial denaturation
94°C	30 sec	35	
Temp gradient (10°C)	30 sec	35	
72°C	1 min 30 sec	35	Time: ~1 min/kb of
			expected product
72°C	10 min	1	
4°C	infinity		

This is how it will look on your PCR machine:

Step	Temperature (°C)	Time (min)		
1.	94°C	3 min		
2.	94°C	30 sec		
3.	45 – 65°C	30 sec		
4.	72°C	1 min 30 sec		
5.	Go to step 2, 35x			
6.	72°C	10 min		
7.	4°C	infinity		

N.B. If some of the bands in the gel shows a desired band, this PCR product is used in the subsequent template generation 2nd PCR.

Notes:

- 1. To prepare 5 pmol primers mix solution: Add 5 μl forward primer, 5 μl reverse primer and add 90 μl H₂O.
- 2. Prepare everything on ice to avoid degradation of your *Taq* polymerase and non-specific primer annealing.
- 3. The amount of cDNA that you are going to use in the PCR reaction depends on the concentration of the cDNA. We are looking for a concentration of at least $10 \text{ng}/\mu\text{L}$. If your cDNA is less that $10 \text{ng}/\mu\text{L}$ add more in the reaction.

Please look at the attached protocol below.

Temperature Gradient PCR (for preparation of 1 gene with @three temperatures)

96-Well-Plate Setup:

_	1	2	3	4	5	6	7	8	9	10	11	12
Α				1			1			1		
В												
С												
D												
Ε												
F												
G												
н												
	49°C	49,3°C	50,2°C	51,69°C	53,2°C	54,7°C	56,3°C	57,8°C	59,4°(C 60,8°C	61,7°C	62,0°C

No.	Name	Expected Size of your GENE	Is the Band OK?
1	Your GENE NAME	682bp	

Master Mix by factor of 4

Factor	H ₂ 0(μl)	10xBuffer(μl)	Q (μl)	dNTPs (μl)	Taq Pol.(μl)
1 x	6.84	2	4	2	0.16
4x	27.36	8	16	8	0.64
	[]	[]	[]	[]	[]

NB. Check the boxes if you have added the reagent so you don't forget it.

Divide the master mix into three by adding 16 μl and add to each 1-2 μl cDNA and 2 μl of Primer mix.

Temperature (°C)		# of Cycles
94°C	Pause	
94°C	2min	1 cycle
94°C	25"	35cycles
Gradient temperatures	25"	35cycles
72°C	1min 30"	35cycles
72°C	10min	1 cycle
4°C	pause	Infinite